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Multistage Stochastic Planning

Models using Piecewise

Linear Response Functions

John R. Birge*
The University of Michigan

1. INTRODUCTION

Random outcomes can often produce significant effects oui planning de-
cisions that consider several time periods. Multistage stochastic programs
can model these decisions but implementations are generally restricted to a

limited number of scenarios in each period. We present an alternative ap-
proximation scheme that can obtain lower and upper bounds on the optimal
objective value in these stochastic programs.

The method is based on building response functions to future outcomes
that depend separably on the variation of random parameters around the
limited set of scenarios that is initially provided. For stochastic linear . . "
programs, the resulting optimization problem involves an objective with
a limited number of nonlinear terms subject to linear constraints. The

Accesion Formethod can be incorporated into various alternative procedures for solving / - -
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multistage stochastic linear programs with finite numbers of scenarios.

". 47 ; -, L In thic re=x " , " the basic model and alternative ap-
proaches. AWe-thea-destribe the basic properties of piecewise linear response
functions. The fourth section presents a basic model for a single scenario
and randomness restricted to constraint levels. The fifth section extends
this to multiple scenarios with varying scenario ranges and to possibilities
for randomness among the constraint vectors.

2. THE BASIC MODEL AND APPROACHES

The multistage stochastic programming model has been applied to re-
source planning in a variety of contexts (see, for example, the references
in Ermoliev and Vets (1988)). The general multistage stochastic program-
ming problem is:

T

min E[" ft(xt)] s. t. gl(XI) = 0,gt(xt-1,Xt) = 0, a. s.,t = I. T,
t=1 (1)

and x nonanticipative. This last constraint restricts xt to depend only on
the outcomes of any random variables up to time t.

In the following, we restrict the problem in (1) to the case of linear f and
g and only allow randomness to enter the right-hand sides of the constraints.
In this case, the problem becomes:

min TL1 +E[c 2x 2 + ... + CTXT]

subject to Ax, = b0,
Bt-ixt- 1  +At.t = t,t = 2. T, (2)
X,>O, t=1 . , T,

where the sizes of the matrices are consistent with xt E Wn,, t - 1 .... T.

and bi E 'Rm',and the random vectors, t E Rn,. Note that this implies
that the decisions Zt in future periods are random and depend on the past
outcomes.

Many possibilities have been suggested for solving (2). We describe these
briefly below.
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One approach to (2) is to assume that the data are Markovian and to fit
the stochastic program into the framework of Markov decision processes.

Grinold showed how this could be done in (1976). For computation, it would
generally be necessary to restrict the outcomes from one period to some
finite set. This may not, however, be possible in general and introduces

error that may not be easily quantifiable.

A similar approach is to fit the stochastic program into the framework of
a dynamic program and to approximate the value function using suitable
functions. The value function is defined recursively using:

VT_1(XT-1) = E [min fT(XT) subject to gT(XT-1, XT) = 0],

and the recursion:

V'(xt) = E [min ft+ 1 (xt+1 ) + Vt+1 (xt+i) subject, to gt+i(xt,xt+1 ) = 0].

This approximation appears in Beale, Dantzig, Watson (1986), by as-
suming a suitable functional for V (for example, a quadratic function) and

then fitting this function using the mean value and the mean and standard
deviations of the random variables. This has an especially convenient form
for production problems. The piecewise linear approximation discussed in

this paper follows many of the basic ideas in this approach.

The use of scenarios is also common in implementations. In this case,
a scenario corresponds to a specific realization of 2.... ,&T. The scenario

approach uses a limited number of these realizations and combines the so-
lutions in some suitable way to obtain a solution to the original problem.
Rockafellar and Wets (1988) show how this can be implemented in a proce-

dure that converges to the solution of the stochastic program (1) in which
all of the scenarios are included.

Implicit in this approach and other procedures with finite numbers of
scenarios is some discretization and aggregation of random variables. The

basic idea behind this approach is to combine several periods and scenarios
(realizations of the random variable) together into an aggregated problem.

For example, the last T - k + 1 periods may be replaced by an objective,
fxk x_) = "= tft(Ttxk), and the constraints become gk(xk.Tixk)

-t=k orgt(Ttxk, Tt+Ixk), where the T are appropriate shift operators to
have xk act on the correct underlying stochastic element.
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Lower bounds are available in this approach by using expected values
when the functions f are convex and the constraints are linear. Upper

bounds are more difficult to achieve. For linear f, Birge (1985a) develops
upper and lower bounds that assume bounded x and linear penalties for
violations of the constraints. They are based on constructing feasible primal

and dual solutions. The assumptions can be relaxed for problems with
special structure, such as production problems (see Birge,1985b). It may
also be possible to develop bounds on the primal and dual variables using
the sublinear approximation procedure.

The piecewise linear approximation presented here is an extension of this

approach in which we find functions that approximate (and bound) response
to variations about the random parameter. The next section describes the
basic principles behind this approach.

3. PIECEWISE LINEAR APPROXIMATIONS

The difficulty with discretization approaches is that many functions eval-
uations are required to obtain bounds on the optimal values (see Birge and
Wets (1986a)). The piecewise linear response approach is an alternative
that can reduce work considerably. The basis for this is the ray approxi-
mation procedure in Birge and Wets (1986a,b). This uses the sublinearity
property of the recourse function to obtain a separable function that ma-
jorizes V, the value function at stage t. This approach is generalized in
Birge and Wets (1987, 1989). Wallace (1987), on the other hand, formu-
lated a procedure that applies to problems in which the recourse function
involves the solution of a network problem. The piecewise linear procedure
in Birge and Wallace (1988) is a combination and generalization of these
two basic approaches for two-stage problems (T = 2).

The two-stage algorithm provides a separable piecewise linear function
that can bound V, throughout the support of the random variables and can
be easily evaluated. This procedure can be extended to multiple stages as
we show in the next section. We first show the results for one period.

To simplify notation and to establish general results, we consider the
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following system:

Ax=b 1 + , A 2 x=b2, 0<x <C+( (3)

where A1 E R1m1xn, A2 E (m-m,)xn, (A 11A 2 )T = A is the coefficient
matrix, (b b2 )T = b is the fixed part of the right-hand side, c is the fixed
part of the bounds on the variables, , is the random availability of resources
and 0 is the random part of the variable capacities, where p > 0. We assume
that there is a positive probability that 6 = 0. Next define Q( , 0) by

Q( , 0) = min{qTxl(3)}. (4)

Finally define X( , €, d-, d+) as the set of x-vectors satisfying

Ax= , A 2 x=O, d- <x<4'+d+ . (5)

Our goal is to find an upper bound on Q( , 0), or, more precisely, on
EQ( , 4). We do this by finding a separable piecewise linear function U(, 4)

defined by

U( 4) W, 0) + H(O) + q Tc:+(i - if i i,
t { qxi-(i - ) if < &

where d - E&1 , and H(O) is a piecewise linear function in 0. The last term

can also be replaced by a general piecewise linear function, f(i - ai), to

obtain sharper bounds.

4. MULTISTAGE APPROXIMATIONS

The basic idea is to use the two-stage method repeatedly to approximate
the objective function by separable functions. For linear problems, this

leads to sublinear or piecewise linear functions as in the previous section.
Functions without recession directions (e.g., quadratic functions) would re-

quire some type of nonlinear ( e.g., quadratic) function that should again
be easily integrable, requiring, for example, limited moment information
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(second moments for quadratic functions). We consider the linear case
below.

The goal is to construct a problem that is separable in the components
of the random vector. Let 77 be the random right-hand side that appears
in period t. We apply the two-stage approach to this problem and then
use the resulting solution as an input to the next stage of the problem.
This random vector r depends on the first-stage decision. Its distribution
is found directly (as, e.g., a piecewise normal distribution if the original
random elements all have normal distributions), or it can be approximated
using moment information. In this case, the distribution that solves the
appropriate moment problem can be used to provide a bound.

The problem is then to find the distribution of the 77 and the form of
the piecewise linear functions V4 for each component i of Y7. The resulting

problem to solve is:
T n

min cz,I + E , I Of (,7,(i)) P(d?7h(i))

t=l i=1

subject to Aix, = b1 ,xi _ 0. (SL)

To find r and V) recursively, assume that we know the distribution of 7t.
(Initially, this is 172 = 2 -Bzt.) The piecewise linear functions are formed

by solving the parametric linear programs in a:

min ctxt subject to Atxt = ±ae(i),xt / 3t, (sub(t - i))

to obtain x, that depends on the parameter a and the lower bound 1t,
which is generally zero but may have negative components if certain random

variables are bounded.

If we restrict ourselves to two pieces, the function is sublinear, so that
i)= (ctzl,+ i)>o + ctzi1,7,(i)<o)(Irh(i)I). Ve then have that

qt+,(j) is given by:

mtr/,(j) = t,(j) - B,(j, .)[E(X+iln,',)> + Xtil7()o(ril] 6

i=1

where we must find the resulting distribution. Note that the values in (6)
are linear functions of 7h on the regions where rh has constant sign. We
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can, therefore, construct rh+l as a function of i/t by overlaying these linear
transformations of random variables. For normally distributed data, this
may be possible since the transformation will not affect the distribution
class.

5. EXTENSIONS

The approximation given above may be difficult to compute if normal
distributions are not present. Instead we may approximate the distribution
of rh+l . This requires bounds on the prob.{rt(i) >_ 0} and on che moments
conditional on rh(i) > or < 0. Given these values, moment problems can
be solved to calculate corresponding values for r/t+l and to bound V .Any
other bounds on the iaput from period t to period t + I (Btxt) can also
be used to obtain bounds on the values so that crude bounds can be
obtained. This may be possible in special cases.

Note also that certain problems, such as networks, may have very few
variables present in the Bt(i, .) term in (6) (because they have a close-to-
simple recourse structure), so that r7 t+1 may be easily calculable for these

problems. These special cases require further investigation.

Another looser but more implementable bound can be obtained by forcing
a feasible and separable response in all future periods depending on a single
random variable in the current period. This eliminates the problem of

characterizing the distribution of inputs to all periods. It does, however,

force a dependency in future periods that may increase the bound.

To develop this response function, let Xt(±i) be an optimal solution.
.t, .... XT, to :

min cj, xt +... +CTXT

subject to Atxt = +e.,
Btxt +At + lxt+l =0,

(7)

.4TXT 0 ,

x,>0, r=t. T.
Now define ¢t.( (j)) - E{CTXt(±i)( t(i)-t(i))±}, where Ct = (C,...

.CT). An upper bound on the objective value of (1) is obtained by solving
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the separable nonlinear program:

min cT'J ... +Cf'T +C (i(t(i))

subject to Aix1  = b.
Btxt +Ae+ l xt+- 0,

t=1 ... , T-1,
X>0, t1. T.

(8)

where E is the support set of the random variables. Note that if we drop

the nonlinear term in the objective, and replace in the constraints with
a fixed valued of E[ ], then we can obtain a lower bound on the optimal
objective value in (1). The upper bound from (8) represents allowing some
variation of the choice of the centering point so that a best approximation
is found. The value of (8) is an upper bound because the composition of
the xt solutions from (8) and the Xt values used in the 0 terms yiel i a

feasible solution fur all .

This procedure m- y also be implemented as response to several scenarios.
In this case, the random vectors are partitioned and the response functions
are evaluated over the partitions. The partitions may also be part of the

higher level optimization problem so that in some way a "best" partition
may be found.

The points used within the partitions may be chosen as expected values,
in which case. the snolntinn without penalty terms is again a lower bound
,q) I ,'1tiit i Ii Wr vii, ':< -,r -Ill ilppor -,iu d. tlii, vector may he

allowed to take on any value in the partition.

The use of multiple scenarios enters directly into the scenario aggrega-
tion approach of Rockafellar and Wets. This can be used to solve the top
level problem and to approach a solution that is optimal for a given set of
partitions and the piecewise linear penalty structure presented here.

Computations are then restricted to optimizing separable nonlinear func-
tions subject to linear constraints. Implementations can be based on pre-
vious procedures (such as decomposition). The value of the method can,
however, only be demonstrated by solving practical problems and observing
the relative errors. Implementation is underway to achieve this goal.
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